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Up to now two kinds of stacking faults related to 
the ratios of iron and oxygen atoms have been proved. 
The chemical compositiion will deviate from the regu- 
lar value of magnetite in local areas in the presence 
of such defects and the average chemical composition 
will be unchanged if these two kinds of stacking faults 
occur in equal numbers. It may be noticed that the 
framework of oxygen in any of them is perfect and 
the stacking faults are caused by the arrangement of 
cations occupying different polyhedral coordinated 
positions. This suggests that there is some degree of 
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Fig. 10. Stacking fault with an iron to oxygen ratio 1 : 1 showing 
a possible arrangement of the iron atoms in the case of cation 
excess (see E in Fig. 8). 

freedom for the occupation of the cations in the 
framework at the initial stage of nucleation when the 
fluctuation of cations happened in local areas and 
this remains in the growing process. In other words, 
the fluctuation of cations may cause the non- 
stoichiometry by forming defects in the stoichiometric 
structure. 

All the defects observed are located on the inter- 
phase boundaries or in coulsonite, implying that they 
were pre-existing defects formed in the process of 
crystallization of an average structure and these posi- 
tions were favourable for the nucleation of coulsonite 
when it separates from the average structure in order 
to reduce the total free energy of the system on 
cooling. In our observations, cations are always in 
deficit, although the presence of excess cations is 
possible in local areas. 
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A b s t r a c t  

The structure of hexagonal Frank-Kasper  (FK) 
phases can be described by the projection of the 
seven-dimensional (7D) Cr3Si and Zr4A13 cubes in a 
suitable projection subspace onto a 3D hyperplane. 
The close relationship between hexagonal FK phases 
and the dodecagonal quasicrystal with 12-fold rota- 
tional symmetry is discussed. 
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I .  I n t r o d u c t i o n  

Significant activity has been generated among con- 
densed-matter physicists and crystallographers by the 
recent discovery of Bragg diffraction patterns with 
icosahedral symmetry corresponding to a new quasi- 
crystalline phase of matter. Several 2D and 3D tiling 
models with noncrystallographic symmetry have been 
proposed based on the view that a quasilattice is a 
projection of a higher-dimensional periodic lattice 
in a defined projection subspace onto a lower- 
dimensional hyperplane. According to Elser & 
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Henley (1985) and Yang & Kuo (1987), this projec- 
tion method can be used to describe both periodic 
and quasiperiodic patterns. Using this method, Yang 
& Kuo (1987) have recently derived the structure of 
both the crystalline pentagonal Frank-Kasper (FK) 
phases as well as that of the icosahedral quasicrystal. 
The method involves the projection of a 6D MgCu2 
cube onto a 3D rational or irrational hyperplane. As 
a continuation of this prior work on pentagonal FK 
phases, we shall discuss in this paper the development 
of this projection method to describe the hexagonal 
FK phases. 

In the following, we describe these structures by 
using a projection of a 7D cubic lattice onto a 3D 
hyperplane. The hexagonal FK phases (Frank & 
Kasper, 1958, 1959) have been described as tetrahe- 
drally close-packed structures consisting of 
hexagonal antiprisms. The simplest cases are the 
cubic Cr3Si and hexagonal Zr4AI3 structures. These 
may be considered as elementary building blocks of 
the other five known hexagonal FK phases (Li & 
Kuo, 1986). The centers of the hexagonal antiprisms 
of these hexagonal FK phases form a net consisting 
of squares and equilateral triangles corresponding to 
the Cr3Si unit and one half of the ZraA13 unit, respec- 
tively. We therefore attempt to obtain these structures 
by the projection of 7D Cr3Si and Zr4ml3 cubes in 
some subspace onto a 3D hyperplane related directly 
to the symmetry of these structures. Recently, the 
discovery of two kinds of dodecagonal quasicrystal 
have been reported (Ishimasa, Nissen & Fukano, 
1985; Chen, Li & Kuo, 1988). The corresponding 
high-resolution electron images show that the new 
quasicrystals also consist of Cr3Si and Zr4A13 units 
but the corresponding tilings are now quasiperiodic. 
Structural models of these quasicrystals have already 
been derived from their close relationship to the 
hexagonal FK phases (Yang & Wei, 1987; Kuo, Feng 
&Chen ,  1988). The projection method is found to 
be a very useful tool in describing the structure of 
the hexagonal FK phases as well as those of the 
dodecagonal quasicrystals. 

The organization of this paper is as follows. In § 2, 
after giving a brief description of the principles in- 
volved, we generate the projection method for calcu- 
lating the structure of these hexagonal FK phases. In 
§ 3, a concrete example of the method is given along 
with all the calculations involved. Finally, the close 
relationship between the hexagonal FK phases and 
the dodecagonal quasicrystal is discussed. 

2. The principle of the method 

Yang & Kuo (1987) have previously explored the 
projection method in detail in order to describe the 
pentagonal FK phases, therefore we just give a simple 
survey here in connection with the hexagonal FK 
phases. It is well known that a 1D projection structure 

can be obtained by the projection of a 2D lattice in 
a strip subspace onto a 1D physical space. When both 
the strip and the 1 D physical space are irrational, the 
corresponding projection structure is incommensur- 
ate. A commensurate structure consisting of the same 
unit cells, however, can also be obtained simply by 
changing the direction of the strip into a rational one. 
It is obvious that a projection structure is determined 
by two major fac tors-namely  the projecting sub- 
space in the higher-dimensional space and the lower- 
dimensional projection plane (projection direction). 
The former determines the method of packing while 
the latter determines the shape and size of the basic 
unit of a system. In our case, we choose the projection 
direction which gives rise to the Cr3Si and Zr4A13 unit 
in 3D physical space. Each of the hexagonal FK 
phases corresponds to a projection of a cubic lattice 
consisting of 7D Cr3Si and ZrnAI3 cubes in a certain 
rational subspace of 7D space. 

Let B be the column matrix of the basis {bi}i=~.7 
of a 7D cell and r a lattice vector in a 7D space, then 

7 

r = E re,b, = 1VIB, (1) 
i = 1  

where m~ are integers and /Q = (m~ mE. . .  m7); /~ = 
{hi b2 . . .  h7}. After projecting onto a 3D hyperplane 
with the basis I = {ij k} in a 3D Cartesian system, r 
becomes r n and we have 

r p = lC/1Q (2) 
and 

Q =  P U =  UI. (3) 

P is a projection operator with the property P = PP. 
U is a representation matrix of the projection of the 
basis vectors of a 7D cube onto a 3D hyperplane. 
This description of the projector P has been given 
by Yang & Kuo (1987). The calculation of the vector 
Q can be carried out by establishing either the projec- 
tion matrix P or the representation matrix U. Using 
U is more convenient than using P. The seven star 
vectors Q = {ql q2 . . .  q7} are the projection of a set of 
7D cell basis vectors onto a 3D physical space. Six 
of this set of basis vectors are coplanar with an angle 
of 30 ° between adjacent vectors while the seventh is 
orthogonal to them (see Fig. 1). Obviously, one can 
combine two of these coplanar basis vectors to derive 
the square and 60 ° rhombus corresponding to the 
Cr3Si or ZraAI3 cells in 3D space. The matrix U thus 
has the form: 

U = l l ( 2 x 3  '/2) 

2 0 O/ 
31/2 1 0 

1 3 ~/2 0 

0 2 0 

-1  3 ~/2 0 
--31/2 1 0 

0 0 2 

(4) 
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Similar matrices have been used to obtain a 
dodecagonal quasilattice (see Yang & Wei, 1987; 
Gahler & Rhyner, 1986). It is clear from this that the 
structure of the dodecagonal quasicrystal is closely 
related to the structure of the hexagonal FK phases. 

If the subspace in the 7D space within which r is 
located is defined, the lattice vector rp in the projected 
structure can be calculated through the U matrix. 

Let 

c = SB,  (5) 

where S is the 7 x 7 transformation matrix for choos- 
ing a subspace. Therefore, the vector set C can be 
considered as a set of 7D subspace vectors. 

B = S - ~ C  = VC,  (6) 

i.e. V = S -1. 

From (1) and (6), a lattice vector r can be expressed 
as  

r = ~ B  = ~ v c  

o r  

and 

7 

r = E WiCi  
i=1 

7 

wi = ~ movi .  (7) 
j = l  

Following Elser (1986) and Yang & Kuo (1987), r 
is located within a predetermined subspace with 

--00< W1, W2, W 3 < O O  
(8) 

k , i<  w, < k2j, i = 4 ,  5,6,7.  

If all the elements of S are rational numbers, the 
projection structure is a periodic one. From the for- 
mulae for calculating lattice constants and atomic 
coordinates, the lattice constants A = {a, a2 as} of the 
primitive cell of the projected structure are the projec- 
tions of c,, c2 and c3, respectively. Then we have 

A = 8 (3) U I  (9a) 

Fig. 1. qi are seven basis vectors and represent the projection of 
a set of 7D cube basis vectors onto a 3D physical space. 

(~) z=i/4 3/4 

0 z= 1/2 

0 z= 0 

(a) 

(b) 

Fig. 2. (a) Structural model of the K phase projected on (001). 
The rectangle shows the primitive cell of the K phase. The 
primitive cells of  CraSi and Zr4Al 3 correspond to the small square 
and rhombus, respectively. (b) The secondary layer of  the K 

1 3 phase, z = ~ and a, illustrating its unit cell ABCDA" B" C" D", and 
the projection vectors AE, AF, AG, AH, AI, AJ of the selection 
7D subspace. 
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and 

I=(S°)U)-~A. (9b) 

S (3) denotes the first three rows of the matrix S. 
Sometimes the origin of the 3D unit cell is displaced 
from that of  the 7D one by r0--MoB, from (2) and 
(9b) then 

rp = (1VI- 1(/1o) U( S(. 3) U ) - ' A  

=(x,y,z)A, (10) 

where JV/o = (mo~ mo2.. • too7) are fractional numbers. 
Equation (10) gives the atomic coordinates (x, y, z) 
in the projected structure. 

3. Hexagonal FK phases and the calculated results 

In discussing the structure of hexagonal FK phases, 
Frank & Kasper (1959) took up the tilings composed 
of squares and equilateral triangles and showed that 
the atoms in Cr3Si form deformed hexagonal anti- 
prisms arranged in a square pattern and those in 
Zr4Al3 are arranged in a hexagonal pattern. Along 
the unique axis (or hexagonal tunnels) of  these sys- 
tems, they are layer structures consisting of four 
layers• For example, consider the K-phase model 
given in Fig. 2(a)" the primary layer has a hexagonal- 
triangle network at 0 or ½ height denoted by open 
circles; the secondary layer at ¼ or 3 height has square- 
triangle networks located at the centers of  these 
hexagonal antiprisms. We can also find the CraSi and 
ZraA13 cells which are the basis for further calcula- 
tions. In the following, starting with the matrix U, 
we first focus on the square-equilateral triangle 
network, i.e. the secondary layer of  the hexagonal FK 
phases. We change the direction of the subspace 
concerned, and give the quantitative results. 

As mentioned above, an important step in obtaining 
a projected structure is to define a suitable subspace 
by choosing the matrix S. For the K phase, the layer 
structure can be represented by the secondary layer 
as shown in Fig. 2(b). In this secondary layer, the 
filled circles and letters without a prime represent the 
nodes at z = ¼, while the open circles and letters with 

5 a double - prime represent those at z = ~ .  

Fig .  3. S t r u c t u r a l  m o d e l s  o f  C r s S i  a n d  Zr4AI  ~. 
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A B C D A " B " C " D "  represents a unit cell of the K 
phase with a~ = AB,  a2 = A D ,  and a3 = AA".  Let AE,  
AF,  AG,  A l l ,  AI ,  A J  and A A "  denote the projected 
vectors ql, q2, q3, q4, qs, q6 and q7, in the 3D hyper- 
plane projected from the vectors b~, b2, b3, b4, bs, 66 
and b7 respectively, of a 7D cube. Then A B =  
qlWq2--q6; A C  =qaW2q4+q5; AA"=qy;  A K  = 
q3"t- q4 ; A H  = q4 ; A F  = q2 and A J  = q6 are the pro- 
jected vectors onto the 3D hyperplane of vectors 
el , ¢2, e3, c4, e5, c6 and c7, thus 

/1 

0 

0 

S =  0 

0 

0 

0 

1 0 0 0 -1 0t 

0 1 2 1 0 0 

0 0 0 0 0 1 

1 0 0 0 0 0 

0 0 1 0 0 0 

0 0 0 0 1 0 

0 1 1 0 0 0 

with the limiting conditions 

- 2 < w 4 < 2 ;  - l < w 5 ,  wy<l ;  0 < w 6 < l .  

All the lattice points in the secondary layer as well 
as the lattice parameters of the primitive cell of the 
K phase can thus be calculated. The latter are given 
by b / a  = 1.366, c / a  =0.366, t~ =/3 = 3/=90 ° - in 
good agreement with experimental data (see Table 
1). In Table 1 the calculated results for ZraAl3, Cr3Si 
and five other hexagonal FK phases are also given. 
The deviation from experiment for most of the calcu- 
lated lattice-parameter magnitudes is less than 1.6% 
with a maximum deviation of 4.0%. In order to 
calculate all atom positions of these phases, we will 
analyze the primitive cells of Cr3Si and ZrnAl3 (see 
Fig. 3), respectively. The primitive cell of Cr3Si is a 
cube with an edge length equal to 1, and it contains 
eight atoms. The edge vectors of the cube should take 
qi and qj with l i - j l - - 3 ,  and the cube itself has six 
different orientations. When i = 1, the 7D coordinates 
of each atom are: two Si's at (½000003)  and 
(000½00~)  and six Cr's at ( 0 0 0 0 0 0 0 ) ,  
(oooooo½), (½oo~oo3), (½oo3oo~), (300½003) 
and (300 ½003), respectively. Similarly, for Zr4Al3 
the primitive cell is a 60 ° rhombus of seven atoms 
with an edge length 1 and it also has six different 
orientations. Thus the corresponding edge vectors are 
qi and ~ with l i - j l  = 2. When i=  1, the 7D coordin- 
ates of each atom are: five Zr's at ( 0 0 0 0 0 0 0 ) ,  
( 000000½) ,  (½000003) ,  (½0½0003) and 
(00½000¼) and two Al's at (~0~0003)  and 
(~0~0003) ,  respectively. Following the above 
description, the atom positions in the other hexagonal 
FK phases can be calculated as shown in Tables 2-6. 

It should be noticed that our calculated result for 
the tr phase is in good agreement (2.9%) with experi- 
ment data for the atom positions (see Table 2), but 
that the deviation of our results for the other 
hexagonal FK phases compared with the previous 
results of Li & Kuo (1986) and Ye, Li & Kuo (1984) 
is rather larger (5.0%). In the latter case, regular 
hexagonal antiprisms were used in constructing the 
structure of these new phases. In fact, hexagonal 
antiprisms in these FK phases are always somewhat 
distorted. Unless some distortion occurs, the distance 
between some atoms in the primary layer is too short 
to accommodate two atoms. 

In summary, we have presented detailed quantita- 
tive calculations for the seven hexagonal FK phases 
using the projection method. The square-triangle 
networks used for describing these structures are all 
periodic. With an irrational subspace, however, a 
quasiperiodic array of such tilings can be obtained 
which may be used to propose a structural model for 
the dodecagonal quasicrystal. Based on experimental 
evidence, Yang & Wei (1987) and Kuo, Feng &Chen 
(1988) have given atomic models for this new quasi- 
crystal. In these cases, Cr3Si and ZraA13 cells were 
packed quasiperiodically or aperiodically with a 12- 
fold bond orientational order. In fact, they can be 
distinguished by different subspaces in the projection 
method. For the random model, the subspace is a 
random one but its average direction is irrational and 
related to dodecagonal symmetry. Once the 3 D hyper- 
plane used to generate the basic unit cell is defined, 
it will be interesting to investigate a quasicrystal 
growth model by considering a series of subspaces. 
The existence of transition structures intermediate 
between the dodecagonal quasicrystal and the 
hexagonal FK phases can also be anticipated. 

The authors thank Dr R. L. Withers for a critical 
reading of the manuscript. 
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